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S1. Theoretical calculations of the X-ray complex index of refraction for water and CaCO3 

We report in this Section the plots of the 𝛿
𝛽

 ratio (Fig. S1) and of the absolute values of 𝛿 (Fig. S2(a)) 

and 𝛽 (Fig. S2(b)) as a function of photon energy E, in the range 1 - 100 keV, for both CaCO3 (solid 

line) and water (dotted line). The complex index of refraction is defined as 𝑛 = 1− 𝛿 + 𝑖 ⋅ 𝛽.The 

plots were produced by using the NIST FFAST database of photon cross-sections and atomic form 

factors [FFAST,Chantler1995, Chantler2000]. 

In Figure S1 one can notice that 𝛿
𝛽

 varies between 102 and 104 supporting the idea proposed in 

Section I of the article that a partial or complete filling/emptying of pores at length scales above the 

spatial resolution should be more easily resolvable in a δ-based image than in a β-based image. 

Figure S2 is used to support the second main idea at the basis of using XPCI for visualization of pure 

water transport in porous materials. If one considers water volumes at the voxel or sub-voxel scale, 

moving from one voxel to another, one should expect to see a more pronounced voxel value change 

in an image based upon δ compared with an image based upon β, because the difference in β 
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between water and the porous substrate is one to two orders of magnitude larger than the same type 

of difference for δ. 

 

Figure S1: plot of the ratio between the decrement 𝛿 of the real part of the index of refraction and its imaginary 

part 𝛽 as a function of the photon energy E. The solid line refers to CaCO3 as representative main chemical 

component of the Globigerina limestone solid phase, while the dotted line refers to water. The large drop for 

CaCO3 at about 4 keV is due to the large and sudden increase of 𝛽 in correspondence of that energy (see also 

Fig. S2(b), solid line). Such a 𝛽 increase is due to K absorption edge of Ca, occurring at 4.0381 keV according 

to theoretical calculations based upon the NIST FFAST database of photon cross-sections and atomic form 

factors [FFAST, Chantler1995, Chantler2000]. The vertical dashed line indicates the photon energy at which 

the X-ray tomographic microscopy measurements were performed. 

 

Figure S2: individual plots of the decrement 𝛿 of the real part (inset (a)) and the imaginary part 𝛽 (inset (b) of 

the index of refraction n for the same photon energy E as in Fig. S1. The solid line still refers to CaCO3 while 

the dotted line to water. The vertical dashed line indicates the photon energy at which the X-ray tomographic 

microscopy measurements were performed. 
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S2. Segmentation of pore voxels 

 

 

 

Figure S3: overlapping of the 1st slice of the AS2 3D image (grey tones) and of the corresponding slice of the 

PORE mask (semi-transparent blue color), the latter obtained by k-means clustering of the AS1 and AS2 3D 

images with a 1D feature space based on the voxel value only. The inset shows a zoom into a smaller ROI, for 

providing an example of the segmentation results quality. 

 

S3. Voxel value distributions for the XACI and XPCI 3D images 

 

 

Figure S4: voxel value, 𝑉0, cumulative distribution functions (CDFs) for the X-ray phase ((a)) and attenuation 

((b)) contrast datasets (3D images), before (dashed curve) and after (solid curve) drying. 𝑃(𝑉 ≤ 𝑉0) means the 

probability for the event 𝑉 ≤ 𝑉0, where 𝑉 indicates generically the voxel value as a random variable. For each 
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3D image, the statistical ensemble is made of all the voxels belonging to the sample region, i.e., not belonging 

to the region surrounding the sample (3D binary image R). 

Each 3D image, of each type (phase or attenuation contrast), was originally voxel-wise subtracted by the 

average voxel value inside R, in order to remove the effect of different offsets due to temporal fluctuations in 

the time-lapse measurements. Given an image type, the minimum of the minima, 𝑉𝑚𝑚𝑚
1,2 , and maximum of the 

maxima, 𝑉𝑚𝑚𝑚
1,2 , voxel values was then used as common dynamic range for both images. That voxel value range 

was then linearly rescaled to the integer interval [0;65535] (16 bit unsigned integer encoding). With such choice 

of dynamic range for each image, of each type, the two time-lapse images of a given type can be compared with 

each other without any bias and the comparison can be performed similarly independently of the image type. 

 

 

Figure S5: voxel value histograms the CDFs of Fig. S4 are derived from. (a) and (b): XPCI datasets, before and 

after drying, respectively. (c) and (d): XACI datasets, before and after drying, respectively. 
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Figure S6: voxel value cumulative distribution functions (CDFs) for the two time-lapse phase (a) and 

attenuation (b) contrast 3D images, with the dashed line indicating the image before the drying while the solid 

line after drying. The only difference compared with the CDFs in Fig. S4 consists in the fact that the images 

before the remapping to the integer value interval [0;65535] were used. 

 

 

 

Figure S7: voxel value histograms the CDFs of Fig. S6 are derived from. (a) and (b): XPCI datasets, before and 

after drying, respectively. (c) and (d): XACI datasets, before and after drying, respectively.  
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S4. Best fit of the voxel value histogram for the PSDIFF dataset and voxels belonging to the 

PORE mask. 2- vs 3-Gaussian mixture model. 

Figure S8 shows the best fit of the voxel value histogram for the time-differential XPCI dataset 

PSDIFF, considering only voxels belonging to the segmented pore regions, i.e., to the PORE 3D 

binary image, using a 2-Gaussian mixture model instead of a 3-Gaussian one as reported within the 

article and shown in its Fig. 4. The best fit was obtained by using the same expectation maximization 

(EM) algorithm as used for the results in Fig. 4. 

It is immediately clear that the 2-Gaussian mixture best fit model performs worse than the 3-

Gaussian one, just by qualitatively comparison of Fig. 4 within the article and Fig. S8. The 2-

Gaussian model is not able, for example, to determine the plateau at about voxel value = 20000 due 

to the overlapping of two Gaussians. 

A more quantitative comparison between the results of the two best fits was obtained by calculating 

for each best fit 3 different goodness-of-fit metrics: 

 

1. 𝑁𝑁𝑁𝑁𝑁 = 1 − ��⃗�𝑓𝑚𝑓 − �⃗�𝑟𝑟𝑓� ��⃗�𝑓𝑚𝑓 − 〈�⃗�𝑟𝑟𝑓〉��  (normalized root-mean squared error) 

2. 𝑁𝑁𝑁𝑁 = 1 − ��⃗�𝑓𝑚𝑓 − �⃗�𝑟𝑟𝑓�
2
��⃗�𝑓𝑚𝑓 − 〈�⃗�𝑟𝑟𝑓〉�

2
�  (normalized mean squared error) 

3. 𝑁 = 𝐶(�⃗�𝑓𝑚𝑓 , �⃗�𝑟𝑟𝑓) ���⃗�𝑓𝑚𝑓� × ��⃗�𝑟𝑟𝑓���  (linear correlation coefficient). 

 

Each �⃗�𝑚, 𝑖 = fit or ref, is a column vector containing the histogram values for each bin. �⃗�𝑓𝑚𝑓 is the 

vector from the best fit, �⃗�𝑟𝑟𝑓 the actual data from the PSDIFF dataset. ��⃗�� indicates the Euclidean 

norm (“magnitude”) of a vector �⃗�. 〈�⃗�𝑚〉 indicates the average value of the components of �⃗�𝑚. 

�⃗�𝑚 − 〈�⃗�𝑚〉 should be interpreted as an element-wise operation, thus still leading to a column vector. 

𝐶(�⃗�𝑓𝑚𝑓 , �⃗�𝑟𝑟𝑓) indicates the covariance between the two vectors, defined as 𝐶��⃗�𝑓𝑚𝑓 , �⃗�𝑟𝑟𝑓� ≡
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〈��⃗�𝑓𝑚𝑓 − 〈�⃗�𝑓𝑚𝑓〉� ⋅ ��⃗�𝑟𝑟𝑓 − 〈�⃗�𝑟𝑟𝑓〉�〉. ⋅ indicates the scalar product between two vectors while × the 

product between two scalar variables. 

NRMSE and NMSE vary from negative infinity (poor fitting) to 1 (perfect fitting). The closer R is to 

1, the higher the correlation between the original data and the fitting results.  

NRMSE and NMSE value were calculated with the MATLABTM built-in function goodnessOfFit(…)., 

while R was calculated with the MATLABTM built-in function corrcoef(…). 

Table SI reports the values of each goodness-of-fit metric for each best fit, confirming that the 3-

Gaussian mixture best fit performed better than the 2-Gaussian one. 

 

 

Figure S8: voxel value histogram (open circles) from the PSDIFF (time-differential XPCI) dataset considering 

only voxels belonging to the PORE 3D binary image, i.e., segmented pore regions. 2-Gaussian mixture best fit 

using the expectation maximization (EM) method. Each Gaussian function of the mixture (dash and dot-dashed 

lines) is plotted along with their sum (solid line). 

 

Table SI. Values for three different goodness-of-fit metrics applied to the best fit of the voxel value histogram of the 

PSDIFF dataset, considering only voxels belonging to the pore region, and using two best fit models, a 2-Gaussian 

mixture and a 3-Gaussian one. 

Goodness-of-fit metric type 
Value 

3-Gaussian mixture 2-Gaussian mixture 

NRMSE 0.9591 0.8690 

NMSE 0.9983 0.9828 

R 0.9992 0.9914 
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